Paolo Dalprato

Creare manuali online con MkDocs e GitHub Pages

Ultimo aggiornamento: 20 dicembre 2025

Questa guida documenta un approccio pratico per pubblicare documentazione tecnica sul web: manuali,
guide, corsi online. Nasce da un'esigenza concreta, vale a dire mantenere aggiornati dei manuali su
strumenti Al che evolvono rapidamente, e dalla collaborazione tra un professionista e Claude, I'assistente Al
di Anthropic.

Non & un tutorial passo-passo. E il racconto di un flusso di lavoro, delle scelte architetturali che lo
sostengono, e di come la collaborazione umano-Al puo accelerare progetti di questo tipo.

A chi erivolta

Professionisti che producono e distribuiscono contenuti informativi: formatori, insegnanti, documentalisti,
giornalisti, divulgatori. Persone che hanno familiarita con la scrittura ma non necessariamente con lo
sviluppo web, e che cercano un sistema sostenibile per pubblicare e aggiornare documentazione online.

Cosa troverai

« |l problema che ha motivato questo progetto e la soluzione adottata

» L'architettura tecnica: quali strumenti, perché questi e non altri

« |l workflow operativo: come si passa da un contenuto grezzo a un sito pubblicato
o Leistruzioni per replicare il sistema

 Riflessioni sulla collaborazione umano-Al nel processo

|l progetto

Questo stesso sito & il risultato del processo descritto. E ospitato su GitHub Pages, generato con MkDocs e
Material for MkDocs, e sviluppato in collaborazione con Claude. Il repository & privato, ma il sito pubblicato
€ accessibile a tutti.

La documentazione che stai leggendo ¢ stata creata usando esattamente il workflow che descrive.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Indice

Creare manuali online

e Achieérivolta
o Cosa troverai

o |l progetto

Introduzione

Il problema

La soluzione

Il risultato

e Perché non usare il proprio sito?

| 'architettura

Lo stack tecnico

Perché queste scelte

L'architettura dei contenuti

La struttura di navigazione

Il workflow

« Il ciclo di lavoro

« Scrivere in Markdown

« Modificare contenuti esistenti
» Aggiungere nuove pagine

* Anteprima locale

e Scaricare il PDF

Setup iniziale

o Prerequisiti

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

o Creare il repository

 Struttura dei file
 Caricare i file su GitHub

» Configurare GitHub Pages

o Configurare i permessi del workflow
e Configurare il DNS

o Verifica

Creare un manuale

Partire dai materiali

o Definire la struttura

e Creareifile

« Aggiornare la navigazione

e Aggiornare la home page

» Scrivere i contenuti

» Convertire materiali esistenti
e Pubblicare

e [terare

Collaborazione umano-Al

e Come ¢ nato il progetto

|l ruolo di Claude nel progetto
» Cosa ha fatto 'umano

o Osservazioni sul processo

« Implicazioni per progetti simili

e Un punto di partenza

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Introduzione

|l problema

Chi produce documentazione tecnica su strumenti digitali affronta un paradosso: nel momento in cui un
manuale viene distribuito, inizia a diventare obsoleto. Gli strumenti evolvono, le interfacce cambiano, nuove
funzionalita vengono aggiunte. Il PDF inviato via email tre mesi fa contiene gia informazioni superate.

Il problema non & solo tecnico. E un problema di modello distributivo. Un documento statico (PDF, dispensa
cartacea, allegato email) una volta consegnato sfugge al controllo dell'autore. Gli aggiornamenti richiedono
una nuova distribuzione, che raramente raggiunge tutti i destinatari originali. Chi ha scaricato la versione
1.0 difficilmente tornera a cercare la 1.1.

Per contenuti che cambiano lentamente questo & accettabile. Per documentazione su strumenti Al, che
evolvono a ritmo mensile quando non settimanale, diventa insostenibile.

|La soluzione

La risposta € spostare la documentazione sul web, in un formato che permetta aggiornamenti continui
mantenendo un URL stabile. Chi consulta il manuale trova sempre la versione corrente. Chi deve produrre la
documentazione puo aggiornarla senza preoccuparsi della redistribuzione.

Ma "pubblicare sul web" pud significare molte cose. Un blog WordPress, un Google Doc condiviso, una
pagina Notion, un wiki. Ciascuna opzione ha compromessi diversi in termini di controllo, portabilita, costi,
complessita.

La soluzione adottata in questo progetto si basa su tre principi:

Separazione tra contenuto e presentazione. | contenuti sono scritti in Markdown, un formato di testo
semplice e portabile. La trasformazione in sito web avviene automaticamente. Se un domani si volesse
cambiare piattaforma, i contenuti restano utilizzabili.

Controllo completo sull'infrastruttura. Nessun vendor lock-in, nessun abbonamento a piattaforme
proprietarie. Gli strumenti sono open source, I'hosting & gratuito (GitHub Pages), il dominio & di proprieta
dell'autore.

Automazione del processo di pubblicazione. Modificare un contenuto e pubblicarlo richiede pochi minuti.
Non serve conoscere HTML, CSS, o configurare server. Si modifica un file di testo, si salva, il sito si aggiorna
automaticamente.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Il risultato

Un sistema che permette di:

 Scrivere documentazione in formato testo semplice (Markdown)
e Pubblicarla automaticamente su un sito web professionale
o Aggiornarla in qualsiasi momento con modifiche immediate
e Mantenere uno storico completo delle versioni
» Generare PDF quando servono (per corsi in aula, distribuzione offline)
o Ospitare pit manuali sotto lo stesso dominio
e Collaborare con altri autori su singoli contenuti
Il costo operativo & vicino allo zero: I'nosting su GitHub Pages & gratuito, gli strumenti sono open source.

L'unico costo eventuale & GitHub Pro (4S/mese) se si desidera mantenere privati i file sorgente durante lo
sviluppo.

Perche non usare il proprio sito?

Chi ha gia un sito web (WordPress, Wix, Squarespace, o altro) potrebbe chiedersi: perché non pubblicare i

manuali li?
E una domanda legittima. La risposta dipende da cosa si vuole ottenere.
Vantaggi di una piattaforma separata:

Indipendenza dalla struttura esistente. Un sito WordPress nato per altri scopi (portfolio, blog, presentazione
aziendale) ha una struttura pensata per quei contenuti. Inserirci documentazione tecnica richiede
adattamenti, plugin, compromessi. Una piattaforma dedicata nasce gia ottimizzata per quel tipo di
contenuto.

Formato neutro e portabile. | contenuti in Markdown sono file di testo che puoi aprire con qualsiasi editor,
convertire in altri formati, riutilizzare in contesti diversi. Un post WordPress ¢ intrappolato nel database del
CMS.

Versionamento nativo. Ogni modifica & tracciata automaticamente. Puoi vedere cosa & cambiato, quando,
tornare a versioni precedenti. WordPress non offre questo senza plugin aggiuntivi.

Collaborazione strutturata. Se lavori con altri autori, il sistema di pull request permette revisioni e
approvazioni prima della pubblicazione. Nessun rischio di sovrascritture accidentali.

Performance e sicurezza. Un sito statico & veloce (niente database da interrogare) e sicuro (niente CMS da
aggiornare, niente vulnerabilita da patchare).

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Costi prevedibili. Hosting gratuito su GitHub Pages. L'unico costo ¢ il dominio, se ne vuoi uno
personalizzato.

Scalabilita. La stessa infrastruttura pud ospitare decine di manuali. Volendo, puo diventare un sito completo,
acquistando dall'hosting solo il nome di dominio.

Cosa richiede in cambio:

Configurazione iniziale. |l primo setup richiede tempo e una certa dimestichezza con strumenti tecnici (o un
assistente Al che guidi il processo). Una volta configurato, la manutenzione & minima.

Scrittura in Markdown. Niente editor visuale integrato come in WordPress: si scrive in un formato testuale
con marcatori. E semplice da imparare (le basi si acquisiscono in pochi minuti), e editor come Panwriter,
Typora o Obsidian offrono una preview affiancata che mostra il risultato finale mentre scrivi — un buon
compromesso per chi preferisce vedere cosa sta producendo.

Processo di pubblicazione. Ogni modifica richiede commit, push, e qualche minuto di attesa per il deploy
automatico. Non & immediato come salvare in WordPress.

In sintesi:

Se i tuoi manuali sono pochi, cambiano raramente, e il tuo sito attuale li ospita senza problemi,
probabilmente non hai bisogno di questa soluzione.

Se invece produci documentazione che evolve, vuoi controllo completo sui contenuti, preferisci non
dipendere da piattaforme proprietarie, 0 semplicemente cerchi un sistema piu pulito e dedicato — questa
architettura offre vantaggi significativi.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

| 'architettura

Lo stack tecnico
Il sistema si compone di quattro elementi:

MkDocs ¢ un generatore di siti statici progettato specificamente per documentazione. Prende file
Markdown e li trasforma in un sito web navigabile, con ricerca integrata, navigazione automatica, e design
responsive.

Material for MkDocs € un tema per MkDocs che aggiunge funzionalita avanzate: modalita chiaro/scuro,
navigazione a tab, table of contents, callout per note e avvisi, e molte altre. E usato da Google, Microsoft,
Amazon, e migliaia di progetti open source. Da novembre 2025 tutte le funzionalita sono gratuite.

GitHub ospita i file sorgente (Markdown) in un repository, gestisce il versioning, e tramite GitHub Actions
automatizza il processo di build. GitHub Pages serve il sito web generato.

Un dominio (proprio o sottodominio) punta al sito su GitHub Pages. La configurazione DNS & I'unico
passaggio che richiede accesso al pannello di gestione del dominio.

Perche queste scelte
La decisione &€ emersa da un'analisi comparativa di diverse opzioni. Le alternative considerate includevano:

Docusaurus (Facebook/Meta): potente ma richiede familiarita con React e Node.js. Eccessivo per chi non &
sviluppatore.

GitBook: ottima esperienza utente ma modello freemium con costi significativi (65$/mese per funzionalita
professionali) e vendor lock-in.

Sphinx: standard per documentazione Python, ma usa reStructuredText invece di Markdown, con curva di
apprendimento piu ripida.

WordPress con plugin documentazione: possibile, ma aggiunge complessita (database, aggiornamenti di
sicurezza, plugin da mantenere) senza vantaggi reali per contenuti statici.

MkDocs con Material € emerso come il miglior compromesso: semplicita di Markdown, funzionalita
professionali, nessun costo, nessun lock-in, comunita attiva.

Per I'hosting, GitHub Pages ha vinto su Netlify e Cloudflare Pages per un motivo pragmatico: se gia si usa
GitHub per il versioning, aggiungere Pages non introduce nuovi servizi da gestire. Il piano gratuito &
sufficiente per documentazione con traffico normale. GitHub Pro (4$/mese) aggiunge la possibilita di
repository privati con Pages pubbliche, utile per sviluppare in privato e pubblicare quando pronti.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

| 'architettura dei contenuti

Il sito € organizzato come monorepo: un unico repository GitHub contiene tutti i manuali. Ogni manuale &
una cartella separata dentro docs/ .

docs-ai-know/

— docs/

| |} index.md # Home page del sito
| — mkdocs-ghpages/ # Questo manuale

| | F— index.md

| | | introduzione.md

| | Y ...

| }— altro-manuale/ # Futuro manuale

| | Y ...

| L— assets/ # Risorse condivise
— mkdocs.yml # Configurazione
L

.github/workflows/deploy.yml # Automazione

Questa scelta ha implicazioni:

Pro: un solo repository da gestire, un solo workflow di deploy, navigazione coerente tra manuali, URL puliti

(dominio.it/manuale/).

Contro: i manuali non sono completamente indipendenti. Un collaboratore che lavora su un manuale ha
potenzialmente accesso a tutti. Ogni modifica, anche a un solo manuale, triggera il rebuild dell'intero sito.

Per progetti con requisiti di separazione piu stringenti (team diversi su manuali diversi, necessita di deploy
indipendenti), esistono architetture alternative che richiedono pero servizi aggiuntivi come Netlify per il
routing tra repository separati.

La struttura di navigazione

Ogni manuale segue una struttura a tre livelli:

Livello 1 (Tab): le sezioni principali, visibili nella barra di navigazione orizzontale. Per manuali compatti pud
esserci un solo tab.

Livello 2 (Capitoli): le voci nella sidebar laterale. Corrispondono ai file Markdown principali.
Livello 3 (Sezioni): i titoli interni alle pagine, navigabili tramite la table of contents sulla destra.

Questa struttura emerge dalla configurazione in mkdocs.yml e dalla gerarchia dei file Markdown. Non
richiede codice, solo organizzazione dei contenuti.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

[l workflow

Il ciclo di lavoro

Una volta configurata l'infrastruttura (operazione una tantum descritta nel capitolo successivo), il ciclo di
lavoro quotidiano ¢ lineare:

1. Scrivi o modifica un file Markdown
2. Salva nel repository GitHub
3. Attendi 2-3 minuti per il build automatico

4. Verifica il risultato sul sito pubblicato

Non serve compilare manualmente, non serve caricare file via FTP, non serve accedere a pannelli di
controllo. Il processo di pubblicazione € completamente automatizzato.

Scrivere in Markdown

Markdown & un formato di testo con convenzioni semplici per la formattazione:

Titolo principale
Sottotitolo
Sezione

Testo normale con **grassetto** e *corsivo*.

- Elenco puntato
Secondo elemento

—

. Elenco numerato
2. Secondo elemento

[Link a una pagina](https://esempio.it)

| [Descrizione immagine] (percorso/immagine.png)

Il vantaggio di Markdown ¢ la leggibilita: anche senza rendering, il testo sorgente &€ comprensibile. E la
portabilita: lo stesso file pud essere convertito in HTML, PDF, DOCX, o altri formati.

Material for MkDocs estende Markdown con funzionalita aggiuntive, come i callout:

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

'l note "Nota"
Questo & un box di nota.

Il warning "Attenzione"
Questo & un avviso.

'l tip "Suggerimento"
Questo & un suggerimento.

Modificare contenuti esistenti

Per modifiche semplici, l'interfaccia web di GitHub & sufficiente:

1. Naviga al file nel repository
2. Clicca l'icona matita (Edit)
3. Modifica il contenuto

4. Clicca "Commit changes"
Il workflow automatico parte immediatamente. In 2-3 minuti la modifica € online.

Per modifiche piu sostanziali, o per lavorare offline, si puo clonare il repository in locale, modificare con
qualsiasi editor di testo, e fare push delle modifiche.

Aggiungere nuove pagine
Aggiungere una pagina richiede due passaggi:

1. Creareiil file .md nella cartella appropriata

2. Aggiungere il riferimento in mkdocs.yml nella sezione nav:

La struttura di navigazione ¢ esplicita: se una pagina non € in nav:, non appare nel menu (ma resta
accessibile via URL diretto).

Anteprima locale

Per vedere il risultato prima di pubblicare, MkDocs include un server di sviluppo:
mkdocs serve

Il sito & visibile su http://localhost:8000 con aggiornamento automatico a ogni modifica salvata.
Richiede MkDocs installato localmente (pip install mkdocs-material).

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Questo passaggio € opzionale: si puo anche pubblicare direttamente e verificare sul sito live. Per piccole
modifiche & spesso pil veloce.

Scaricare il PDF

Ogni manuale & disponibile anche in versione PDF per la consultazione offline o la stampa. Il link per il
download si trova nella home page del sito e nella pagina di introduzione di ogni manuale.

Il PDF viene rigenerato automaticamente a ogni aggiornamento del sito, quindi & sempre allineato con la
versione web. Include copertina, indice navigabile e numerazione dei capitoli.

& Quando usare il PDF

Il canale principale resta il web, che garantisce contenuti sempre aggiornati. Il PDF & utile per situazioni
specifiche: consultazione senza connessione, stampa per corsi in aula, archiviazione di una versione datata.

Generazione manuale con Pandoc

Per esigenze specifiche (formattazione personalizzata, layout particolare) & possibile generare PDF
manualmente usando Pandoc:

pandoc docs/manuale/*.md -o manuale.pdf \
--template eisvogel \
--pdf-engine=xelatex \
--toc --number-sections \
-V lang=it

Il template Eisvogel produce PDF di qualita professionale. Richiede Pandoc e LaTeX installati localmente.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Setup iniziale

Questa sezione descrive la configurazione una tantum dell'infrastruttura. Una volta completata, il sistema
funziona in autonomia e il lavoro quotidiano si riduce alla scrittura e modifica dei contenuti.

Prerequisiti

Account GitHub: gratuito per repository pubblici. GitHub Pro (4$/mese) per repository privati con GitHub
Pages pubbliche, utile se vuoi sviluppare in privato prima di pubblicare.

Un dominio o sottodominio: puo essere un dominio dedicato (docs.esempio.it) 0 un sottodominio di un
sito esistente. Serve accesso al pannello DNS per la configurazione.

MkDocs e Material (opzionale per sviluppo locale):

pip install mkdocs-material

Creare il repository

Su GitHub, crea un nuovo repository:

» Nome: scegli un nome descrittivo (es. docs-miosito)
 Visibilita: Private se hai GitHub Pro e vuoi sviluppare in privato, altrimenti Public

« Inizializzazione: non selezionare nulla (né README, né .gitignore)

Struttura dei file

Il repository deve contenere questa struttura minima:

repository/

F— .github/

| — workflows/

| L— deploy.yml # Workflow di build e deploy

— docs/

| }— index.md # Home page

| L— CNAME # Dominio custom (una riga col dominio)
L— mkdocs.yml # Configurazione MkDocs

Il file mkdocs.yml

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Configurazione base:

site_name: Nome del tuo sito
site_url: https://tuodominio.it/
site_author: Tuo Nome

theme:
name: material
language: it
palette:
- scheme: default
primary: indigo
accent: indigo
toggle:
icon: material/brightness-7
name: Passa alla modalita scura
- scheme: slate
primary: indigo
accent: indigo
toggle:
icon: material/brightness-4
name: Passa alla modalita chiara
features:
- navigation.tabs
- navigation.sections
- navigation.top
- search.suggest
- search.highlight

nav:
- Home: index.md
plugins:
- search:
lang: it

markdown_extensions:
- admonition
- pymdownx.details
- pymdownx.superfences
- toc:
permalink: true

Il file deploy.yml

Questo filein .github/workflows/ automatizza build e pubblicazione:

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

name: Deploy MkDocs to GitHub Pages

on:
push:
branches:
- main

permissions:
contents: read
pages: write
id-token: write

concurrency:
group: "pages"
cancel-in-progress: false

jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: '3.x'
- run: pip install mkdocs-material
- run: mkdocs build
- uses: actions/configure-pages@v4
- uses: actions/upload-pages-artifact@v3
with:
path: site/
deploy:
environment:

name: github-pages

url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-latest
needs: build
steps:

- uses: actions/deploy-pages@v4

Il file CNAME

Un file di testo con una sola riga: il tuo dominio.

docs.tuodominio.it
La home page

Il file docs/index.md sara la prima pagina del sito. Puo essere minimale inizialmente e arricchito in

seguito.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Caricare i file su GitHub

Se usi l'interfaccia web:

1. Nel repository, clicca "Add file" - "Create new file"

2. Per creare cartelle, scrivi il percorso completo (es. .github/workflows/deploy.yml)

3. Incolla il contenuto e salva con "Commit changes"

File nascosti

| file che iniziano con . (come .github) sono nascosti nei sistemi operativi. Il drag-and-drop dal file
manager potrebbe non caricarli. Usa "Create new file" per crearli direttamente su GitHub.

Configurare GitHub Pages

1. Vai in Settings del repository
2. Sezione Pages nel menu laterale
3. Source: seleziona "GitHub Actions”

4. Custom domain: inserisci il tuo dominio (es. docs.tuodominio.it)

Configurare i permessi del workflow

Se il primo deploy fallisce con errore sui permessi:

1. Settings — Actions —. General
2. Sezione Workflow permissions

3. Seleziona Read and write permissions

4. Salva

Configurare il DNS

Nel pannello di gestione del tuo dominio, aggiungi un record DNS:

Tipo Nome Valore

CNAME docs (o @ per dominio principale) tuousername.github.io

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Sostituisci tuousername con il tuo username GitHub e docs con il sottodominio scelto.

La propagazione DNS puo richiedere da pochi minuti a 24 ore. GitHub Pages verifichera automaticamente
la configurazione.

Verifica
Dopo la propagazione DNS e il completamento del workflow:

1. Vai nella tab Actions del repository
2. Verifica che il workflow sia completato (spunta verde)

3. Visita il tuo dominio nel browser

Se vedi la home page, il setup & completato. Ogni push sul branch main aggiornera automaticamente il
sito.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Creare un manuale

Una volta che l'infrastruttura e configurata, aggiungere un nuovo manuale al sito & un processo strutturato
ma semplice. Questo capitolo descrive il ciclo di lavoro per passare da un'idea (o da materiali esistenti) a un
manuale pubblicato.

Partire dai materiali

Un nuovo manuale pud nascere da situazioni diverse:

Da documenti esistenti: PDF, Word, presentazioni PowerPoint che contengono gia il contenuto da
trasformare. Il lavoro € principalmente di conversione e riorganizzazione.

Da contenuti web: pagine gia pubblicate altrove che si vogliono consolidare in un formato piu strutturato.

Da zero: un argomento da documentare senza materiali preesistenti. Il lavoro include la creazione dei
contenuti.

In tutti i casi, il primo passo & definire la struttura.

Definire la struttura

Prima di scrivere, € utile progettare |'architettura dei contenuti. La domanda guida &: come organizzo le
informazioni perché siano trovabili e comprensibili?

La struttura a tre livelli di MkDocs Material offre una griglia:

Livello 1 (Sezioni principali): le macro-aree dell'argomento. Per un manuale software potrebbero essere

"Iniziare", "Funzionalita", "Riferimenti". Per un corso: "Modulo 1", "Modulo 2", ecc.

Livello 2 (Capitoli): gli argomenti specifici dentro ogni sezione. Ogni capitolo diventa un file Markdown e
una voce nella sidebar.

Livello 3 (Sottosezioni): i paragrafi interni a ogni capitolo. Sono i titoli H2 e H3 nel Markdown, navigabili
dalla table of contents.

Una buona struttura emerge dall'incrocio tra la logica del contenuto e le esigenze del lettore. Non esiste una
formula unica.

Creareifile

Per ogni manuale, crea una cartellain docs/ :

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

docs/

— index.md

— nuovo-manuale/

| |} index.md # Introduzione al manuale
— capitolo-1.md
— capitolo-2.md

|
|
| '— capitolo-3.md
I_.-.

L' index.md dentro la cartella del manuale serve come pagina di ingresso: presenta l'argomento, il pubblico
target, cosa trovera il lettore.

I nomi dei file dovrebbero essere: - Lowercase - Senza spazi (usa trattini) - Senza caratteri speciali o
accentati - Descrittivi ma brevi

Aggiornare la navigazione

Ogni nuovo manuale va aggiunto in mkdocs.yml, nella sezione nav: :

nav:
- Home: index.md
- Nuovo Manuale:
- nuovo-manuale/index.md
- Capitolo 1: nuovo-manuale/capitolo-1.md
- Capitolo 2: nuovo-manuale/capitolo-2.md
Capitolo 3: nuovo-manuale/capitolo-3.md

L'ordine nel file determina l'ordine nella navigazione. La struttura indentata riflette la gerarchia: le voci sotto
"Nuovo Manuale" appariranno come sottomenu.

Aggiornare la home page

La home page del sito (docs/index.md) dovrebbe elencare i manuali disponibili. Quando aggiungi un
manuale, aggiungi anche un link e una breve descrizione nella home.

Scrivere i contenuti
Con la struttura definita, la scrittura pud procedere capitolo per capitolo. Alcuni principi utili:

Paragrafi brevi: sul web si legge diversamente che su carta. Paragrafi di 3-5 righe sono piu digeribili di
blocchi densi.

Un concetto per sezione: ogni titolo H2 o H3 dovrebbe corrispondere a un'idea. Se una sezione copre troppi
concetti, probabilmente va divisa.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Usare i callout: e note, gli avvisi, i suggerimenti spezzano il flusso e attirano 'attenzione sui punti
importanti.

Link interni: collega i capitoli tra loro quando fanno riferimento a concetti spiegati altrove. In Markdown:
[testo del 1link](../altro-capitolo.md) .

Convertire materiali esistenti

Se parti da documenti esistenti, Pandoc puo aiutare nella conversione:
pandoc documento.docx -o output.md --wrap=none

Il risultato richiede quasi sempre revisione: la struttura dei titoli potrebbe non corrispondere a quella
desiderata, le immagini vanno estratte e ri-collegate, la formattazione va adattata.

Per PDF, la conversione diretta € piu problematica. Spesso conviene partire dal testo estratto e ristrutturarlo
manualmente.

Pubblicare

Con i file creati e la navigazione aggiornata:

1. Commit delle modifiche su GitHub
2. Il workflow parte automaticamente

3. In 2-3 minuti il manuale € online

Per manuali corposi, puo essere utile pubblicare progressivamente: prima la struttura con contenuti parziali,
poi i capitoli completi uno alla volta. Questo permette di verificare che la navigazione funzioni prima di
investire nella scrittura completa.

lterare

La pubblicazione non ¢ la fine. Il vantaggio di questo sistema ¢ la facilita di aggiornamento. Errori,
integrazioni, chiarimenti possono essere aggiunti in qualsiasi momento.

Una pratica utile: rileggere il manuale dopo qualche giorno dalla prima pubblicazione, con occhi freschi.
Spesso emergono passaggi poco chiari o mancanze che non si notavano durante la scrittura.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Note sulla collaborazione umano-Al

Questo manuale, e il sistema che descrive, sono il prodotto di una collaborazione tra un professionista e
Claude, l'assistente Al di Anthropic. Questa sezione riflette su come si € svolta quella collaborazione e su
cosa suggerisce per l'uso dell'Al in progetti simili.

Come e nato il progetto

Il punto di partenza era eliminare i manuali in versione PDF statica: la necessita di mantenere la
documentazione sempre aggiornata si scontrava con la realta che ogni nuova versione significava
ridistribuire il file, sapendo che molti destinatari avrebbero continuato a usare quella vecchia.

La soluzione, individuata in un brainstorming tra umano e Claude, ¢ stata spostare la documentazione sul
web mantenendo la possibilita di scaricare il PDF per chi ne ha bisogno. L'intero processo, dall'analisi del
problema alla scelta degli strumenti fino all'implementazione funzionante, si € concluso in circa mezza
giornata di lavoro grazie alla partecipazione attiva dell'Al.

I ruolo di Claude nel progetto

Claude ha contribuito in diverse fasi.

Analisi delle alternative. Prima di scegliere MkDocs e GitHub Pages, Claude ha analizzato diverse opzioni
(Docusaurus, Sphinx, GitBook, WordPress con plugin), confrontandole per complessita, costi, funzionalita,
portabilita. L'analisi ha permesso una decisione informata invece di una scelta casuale o basata solo su
familiarita pregressa.

Progettazione dell'architettura. La scelta tra repository separati o monorepo, tra GitHub Pages e alternative
come Netlify o Cloudflare Pages, &€ emersa da un dialogo iterativo. Claude ha presentato opzioni,
evidenziato trade-off e adattato le raccomandazioni man mano che emergevano vincoli e preferenze.

Generazione del codice. | file di configurazione (mkdocs.yml, deploy.yml), la struttura delle cartelle, il
workflow di GitHub Actions sono stati generati da Claude. Non copiati da template generici, ma costruiti
specificamente per le esigenze del progetto.

Debugging in tempo reale. Quando il primo deploy & fallito (un problema di permessi nel workflow), la
diagnosi e la soluzione sono arrivate nel giro di pochi scambi. Claude ha interpretato I'errore, identificato la
causa e fornito i passaggi correttivi.

Scrittura della documentazione. Questo stesso manuale ¢ stato scritto da Claude a partire dalla
conversazione che ha generato il progetto. Non una trascrizione, ma una rielaborazione che estrae il flusso
logico e lo organizza in forma consultabile.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Cosa ha fatto 'umano

Il ruolo umano nel progetto & stato di direzione, decisione e verifica.

Definire il problema. L'esigenza di partenza, vale a dire una documentazione aggiornabile, & emersa
dall'esperienza professionale, non da un prompt.

Porre vincoli. Il rifiuto di soluzioni con costi ricorrenti significativi, la preferenza per strumenti che
minimizzassero i servizi da gestire, la necessita di mantenere la possibilita di generare PDF: questi vincoli
hanno guidato l'esplorazione.

Decidere tra alternative. Quando Claude ha presentato opzioni con trade-off diversi, la scelta ¢ stata
umana. L'Al pud analizzare, ma le preferenze e le priorita restano dell'utente.

Eseguire le azioni. Creare |'account, configurare il DNS, caricare i file, verificare che il sistema funzioni:
gueste azioni sono state compiute dall'umano, seguendo le indicazioni ma non delegandole.

Validare i risultati. Il giudizio finale su cosa funziona e cosa no, su cosa & chiaro e cosa va riscritto, resta
umano.

Osservazioni sul processo
Alcune caratteristiche di questa collaborazione meritano nota.

Iterazione, non one-shot. Il progetto non & nato da un singolo prompt ben formulato. E emerso da una
conversazione estesa, con domande, dubbi, cambi di direzione. Claude ha seguito il filo, mantenuto il
contesto, adattato le proposte.

Competenza ibrida. L'umano ha portato conoscenza del dominio (formazione, documentazione tecnica,
esigenze dei destinatari) e capacita di giudizio. Claude ha portato conoscenza tecnica (MkDocs, GitHub
Actions, configurazione DNS, architetture possibili) e capacita di generazione. Nessuno dei due avrebbe
completato il progetto da solo, almeno non con la stessa efficienza.

Trasparenza del processo. Claude non ha nascosto le proprie limitazioni. Quando non poteva accedere a un
repository privato, I'ha detto. Quando un'opzione inizialmente suggerita (Cloudflare Pages per routing multi-
repo) si & rivelata pit complessa del previsto, ha corretto la rotta.

Documentazione incorporata. La conversazione stessa e diventata materiale per la documentazione.
Invece di ricostruire a posteriori cosa si € fatto e perché, il ragionamento era gia esplicitato.

Implicazioni per progetti simili

Questo caso studio suggerisce alcuni principi per l'uso dell'Al in progetti di documentazione e sviluppo.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

Partire dal problema, non dallo strumento. La conversazione piu produttiva inizia con "ho questo problema"
piuttosto che con "fammi un sito MkDocs". L'Al pud esplorare soluzioni se conosce il contesto.

Esplicitare i vincoli. Budget, competenze tecniche disponibili, preferenze, requisiti non negoziabili: piu I'Al sa
cosa conta, meglio puo filtrare le opzioni.

Iterare senza fretta. Le soluzioni migliori nascono dal dialogo. Cambiare idea a meta strada non & un
fallimento, é raffinamento.

Verificare, non fidarsi ciecamente. Claude pud sbagliare, pud non conoscere aggiornamenti recenti, pud
fraintendere. Il controllo umano non & opzionale.

Documentare mentre si procede. Se la conversazione € il luogo dove si prendono decisioni, € anche il luogo
naturale da cui estrarre documentazione. Non rifare il lavoro dopo: usare quello che c'e gia.

Un punto di partenza

Questo progetto € un esempio, non un modello universale. Altri contesti, altri vincoli, altre competenze
produrranno collaborazioni diverse.

Ma l'idea di base, ovvero che un professionista non tecnico possa, con l'assistenza di un'Al, costruire e
mantenere un sistema di documentazione professionale, &€ dimostrata. Non richiede di diventare
sviluppatori. Richiede di saper dialogare con chi (o cosa) le competenze tecniche le ha.

Licenza: CC BY-NC 4.0 — Autore: Paolo Dalprato

